
Formal Verification of a Power Controller
Using the Real-Time Model Checker UPPAAL

Klaus Havelund
�
, Kim Guldstrand Larsen

�
, and Arne Skou

�
�

NASA Ames Research Center, Recom Technologies, CA, USA
havelund@ptolemy.arc.nasa.gov�

BRICS, Aalborg University, Denmark�
kgl,ask � @cs.auc.dk

Abstract. A real-time system for power-down control in audio/video compo-
nents is modeled and verified using the real-time model checker UPPAAL. The
system is supposed to reside in an audio/video component and control (read from
and write to) links to neighbor audio/video components such as TV, VCR and
remote–control. In particular, the system is responsible for the powering up and
down of the component in between the arrival of data, and in order to do so in a
safe way without loss of data, it is essential that no link interrupts are lost. Hence,
a component system is a multitasking system with hard real-time requirements,
and we present techniques for modeling time consumption in such a multitasked,
prioritized system. The work has been carried out in a collaboration between Aal-
borg University and the audio/video company B&O. By modeling the system, 3
design errors were identified and corrected, and the following verification con-
firmed the validity of the design but also revealed the necessity for an upper limit
of the interrupt frequency. The resulting design has been implemented and it is
going to be incorporated as part of a new product line.

1 Introduction

Since the basic results by Alur, Courcoubetis and Dill [3, 4] on decidability of model
checking for real–time systems with dense time, a number of tools for automatic ver-
ification of hybrid and real–time systems have emerged [7, 14, 10]. These tools have
by now reached a state, where they are mature enough for application on industrial
development of real-time systems as we hope to demonstrate in this paper.

One such tool is the real–time verification tool UPPAAL
�

[7] developed jointly by
BRICS

�
at Aalborg University and Department of Computing Systems at Uppsala Uni-

versity. The tool provides support for automatic verification of safety and bounded live-
ness properties of real–time systems and contains a number of additional features in-
cluding graphical interfaces for designing and simulating system models. The tool has
been applied successfully to a number of case–studies [13, 18, 5, 6, 16, 9] which can
roughly be divided in two classes: real–time controllers and real–time communication
protocols.

�
See URL: http://www.docs.uu.se/docs/rtmv/uppaal for information about UPPAAL.�
BRICS – Basic Research in Computer Science – is a basic research centre funded by the Danish
government at Aarhus and Aalborg University.

Industrial developers of embedded systems have been following the above work
with great interest, because the real–time aspects of concurrent systems can be ex-
tremely difficult to analyze during the design and implementation phase. One such
company is Bang � Olufsen (B&O) – having development and production of fully
integrated home audio/video systems as a main activity.

The work presented in this paper documents a collaboration between AAU (Aal-
borg University) – under the BRICS project – and B&O on the development of one
of the company’s new designs: a system for audio/video power control. The system is
supposed to reside in an audio/video component and control (read from and write to)
links to neighbor audio/video components such as TV, VCR and remote–control. In
particular, the system is responsible for the powering up and down of the component in
between the arrival of data, and in order to do so, it is essential that no link interrupts
are lost. The work is a continuation of an earlier successful collaboration [13] between
the same two organizations, where an existing audio/video protocol for detecting colli-
sions on a link between audio/video components was analyzed and found to contain a
timing error causing occasional data loss. The interesting point was, that the error was
a decade old, like the protocol, and that it was known to exist – but normal testing had
never been sufficient in tracking down the reason for the error.

The collaboration between B&O and AAU spanned 3 weeks (4 including report
writing), and was very intense the first week, where a representative from B&O vis-
ited AAU, and a first sketch of the model was produced. During the next two weeks,
the model was refined, and 15 properties formulated by B&O in natural language were
formalized and then verified using the UPPAAL model checker. During a meeting, revi-
sions to the model and properties were suggested, and a final effort was spent on model
revision, re-verification and report writing. The present paper is an intensive elaboration
of the preliminary report [12] � .

The paper is structured as follows. Section 2 contains an informal description of the
B&O protocol, and in section 3 we present the UPPAAL modeling language and tool.
In section 4 we present our techniques for modeling timed transitions and interrupts in
the UPPAAL language. Section 5 presents the formal modeling of this protocol in the
UPPAAL language, while section 6 presents the verification results. Finally section 7
provides an evaluation of the project and points out future work.

2 Informal Description of the Power Down Protocol

In this section, we provide an informal description of the designed protocol for power
down control in an audio/video component. As advocated in [15], we divide the de-
scription into environment, syntax, and protocol rules.

2.1 Protocol Environment

A typical B&O configuration consists of a number of components, which are intercon-
nected by different kinds of links carrying audio/video data and (or) control informa-
tion. Each component is equipped with two processors controlling audio/video devices

�
A full version of the paper is available at
http://ic-www.arc.nasa.gov/ic/projects/amphion/people/havelund.

and links, and among other tasks, the processors must minimize the energy consump-
tion when the component goes stand by. Each processor may be in one of two modes:
(1) active, where it is operational and can handle its devices and links, (2) stand by,
where it is unable to do anything except wake up and enter active mode. One of the pro-
cessors acts as a master in the sense that it may order the other processor (the slave) to
enter stand by mode (and thereby reduce energy consumption). Due to physical laws �
a processor cannot leave stand by mode via one atomic action, and the purpose of the
protocol is to ensure that stand by operation is handled in a consistent way, i.e. when
one of the processors enters or leaves stand by mode, this is also recognized by the other
processor. Furthermore, whenever a processor senses valid data on an external link, it
must leave stand by operation. Also, the real-time duration for switching between the
modes may not exceed a given upper limit in order not to lose messages.

Figure 1 illustrates the processor interconnection and our model of the software ar-
chitecture for one of the processors. Each processor communicates with devices and
other components via external links

�
, and the two processors are interconnected via an

internal link. The software architecture will be almost identical for the two processors,
and in this report we concentrate on the IOP3212 processor – the slave processor. The
main software module is the IOP process which communicates with the AP processor,
the external link drivers, and the interrupt handlers according to the protocol rules de-
scribed below. The protocol forms the crucial part of the software design, because it
must assure that no data and interrupts are lost (in order to leave stand by operation at
due time).

ap_down

ap_active

ap_down_ack

ap_down_nack

IOP

AP 3002 processor

IOP 3212 processor device links

data/no_data

interrupt/no_interrupt

check driver

check interrupt

interrupt
handlers

drivers

Fig. 1. Software architecture of the power down protocol. The protocol entity process (IOP) re-
ceives protocol commands (left arrows) from the drivers and interrupt handlers by issuing check
commands (right arrows).

�
It takes e.g. approx. 1 ms to make the processor operational when it has been in stand by
operation.�
The figure illustrates a configuration with one external link, the LSL link.

2.2 Protocol Syntax

The power down protocol entity (the IOP process) communicates with its environ-
ment (AP processor, link drivers and interrupt handlers) via the protocol commands
in the set:

�
ap down, ap active, ap down ack, ap down nack, data, no data, interrupt,

no interrupt � . The ap down command is sent from the AP processor and commands
the IOP processor to enter stand by operation. The data command is sent from a link
driver and indicates that meaningful input has been detected on the link, whereas the
no data command indicates that there is no input from the link. Likewise, the inter-
rupt (no interrupt) command is sent from from the link interrupt handler and indi-
cates that an interrupt (or no interrupt) has been received at the link interrupt interface.
The commands ap active, ap down ack, ap down nack informs the AP3002 processor
about state changes of the protocol, that is, ap active is sent when the IOP3212 proces-
sor becomes active, ap down ack is sent when it accepts to enter stand by mode, and
ap down nack is sent when stand by cannot be entered.

2.3 Protocol Rules

In order to give an intuitive explanation of the protocol, we describe below in an infor-
mal way the major protocol rules, which must be obeyed by the IOP protocol entity. We
leave out the details on communication with interrupt handlers and drivers, which will
be described in the formalization section. In order to structure the description, we define
the following major phases (see Figure 2 below) for the entity: the active phase, where
the IOP is in normal (active) operation, the check driver phase, where the IOP process
is waiting for a driver status (no data/data) in order to decide whether or not to leave
the active phase, the stand by phase, where the IOP processor is out of operation, and
the check interrupts phase, where the IOP processor is waiting for an interrupt handler
status (no interrupt/interrupt) in order to decide whether or not to enter the stand by
phase. We use ?/! to indicate protocol input/output in the usual way.

Active rule In the active phase, the IOP protocol entity must enter the check driver
phase, whenever a ap down command is received from the AP processor.

Check driver rule In the check driver phase, the IOP protocol entity commands the
drivers to check whether or not meaningful data are received from the links. The
outcome of the check defines the succeeding phase according to Figure 2.

Stand by rule Whenever an interrupt is received in the stand by phase, the IOP protocol
entity must enter the check driver phase.

Check interrupts rule In the check interrupts phase, the protocol entity commands the
interrupt handlers to check for pending interrupts. If no interrupts are pending, the
stand by phase can safely be entered. Otherwise, the check driver phase is entered.

The above rules have to be implemented in such a way, that (1) Whenever an in-
terrupt is received and meaningful data is present on the given link, the active phase
must be entered, and (2) Whenever a down signal is received from the AP processor
and no interrupts and valid data are present, the stand by phase must be entered. The
delay caused by software of these transitions may not exceed ���������
	 since otherwise
data may be lost.

check interrupts

stand by

active

data

down signal
data

interrupt

interrupt

no interrupt

no data

no data

check driver

check driver

check driver

data

no data

initial state

Fig. 2. Major protocol phases. The dotted lines indicate transitions leading towards power down.
The full lines are leading towards power up. The two neighboring ’check driver’ phases are
necessary in order to be able to ignore noise from the communication lines.

The informal rules form the basis for the model design, and in the analysis section,
we present a complete list of protocol requirements in terms of properties of the formal
protocol model.

3 The UPPAAL Model and Tool

UPPAAL is a tool box for symbolic simulation and automatic verification of real–timed
systems modeled as networks of timed automata [4] extended with global shared in-
teger variables. More precisely, a model consists of a collection of non–deterministic
processes with finite control structure and real–valued clocks communicating through
channels and shared integer variables. The tool box is developed in collaboration be-
tween BRICS at Aalborg University and Department of Computing Systems at Uppsala
University, and has been applied to several case–studies [13, 18, 5, 6, 16, 9].

The current version of UPPAAL is implemented in C++, XFORMS and MOTIF and
includes the following main features:

– A graphical interface based on Autograph [8] allowing graphical descriptions of
systems.

– A compiler transforming graphical descriptions into a textual programming format.
– A simulator, which provides a graphical visualization and recording of the possi-

ble dynamic behaviors of a system description. This allows for inexpensive fault
detection in the early modeling stages.

– A model checker for automatic verification of safety and bounded–liveness proper-
ties by on–the–fly reachability analysis.

– Generation of (shortest) diagnostic traces in case verification of a particular real–
time system fails. The diagnostic traces may be graphically visualized using the
simulator.

A system description (or model) in UPPAAL consists of a collection of automata
modeling the finite control structures of the system. In addition the model uses a finite
set of (global) real–valued clocks and integer variables.

Consider the model of Figure 3. The model consists of two components A and B
with control nodes

�
A0, A1, A2, A3 � and

�
B0, B1, B2, B3 � respectively. In addition

to these discrete control structures, the model uses two clocks x and y, one integer
variable n and a channel a for communication.

y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3
a!a!a!a!a!a!a!a!a!a!a!a!a!a!a!a!a!
y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0 y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4 n == 5n == 5n == 5n == 5n == 5n == 5n == 5n == 5n == 5n == 5n == 5n == 5n == 5n == 5n == 5n == 5n == 5

x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2
a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?
n := 5n := 5n := 5n := 5n := 5n := 5n := 5n := 5n := 5n := 5n := 5n := 5n := 5n := 5n := 5n := 5n := 5
x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0

n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1

A0A0A0A0A0A0A0A0A0A0A0A0A0A0A0A0A0
(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)

A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1 A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2 A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3

B0B0B0B0B0B0B0B0B0B0B0B0B0B0B0B0B0
(x <= 4)(x <= 4)(x <= 4)(x <= 4)(x <= 4)(x <= 4)(x <= 4)(x <= 4)(x <= 4)(x <= 4)(x <= 4)(x <= 4)(x <= 4)(x <= 4)(x <= 4)(x <= 4)(x <= 4)

c:B1c:B1c:B1c:B1c:B1c:B1c:B1c:B1c:B1c:B1c:B1c:B1c:B1c:B1c:B1c:B1c:B1 B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2 B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3

AAAAAAAAAAAAAAAAA

BBBBBBBBBBBBBBBBB

Fig. 3. An example UPPAAL model

The edges of the automata are decorated with three types of labels: a guard, ex-
pressing a condition on the values of clocks and integer variables that must be satisfied
in order for the edge to be taken; a synchronization action which is performed when
the edge is taken forcing as in CCS [19] synchronization with another component on
a complementary action � , and finally a number of clock resets and assignments to in-
teger variables. All three types of labels are optional: absence of a guard is interpreted
as the condition

�������
, and absence of a synchronization action indicates an internal

(non–synchronizing) edge similar to � –transitions in CCS. Reconsider Figure 3. Here
the edge between A0 and A1 can only be taken, when the value of the clock y is greater
than or equal to 	 . When the edge is taken the action a! is performed thus insisting on
synchronization with B on the complementary action a?; that is for A to take the edge
in question, B must simultaneously be able to take the edge from B0 to B1. Finally,
when taking the edge, the clock y is reset to � .

In addition, control nodes may be decorated with so–called invariants, which ex-
press constraints on the clock values in order for control to remain in a particular node.
Thus, in Figure 3, control can only remain in A0 as long as the value of y is no more
than
 .

Formally, states of a UPPAAL model are of the form � ������ , where � is a control
vector indicating the current control node for each component of the network and � is an
assignment given the current value for each clock and integer variable. The initial state
�

Given a channel name a, a! and a? denote complementary actions corresponding to sending
respectively receiving on the channel a.

of a UPPAAL model consists of the initial node of all components � and an assignment
giving the value � for all clocks and integer variables. A UPPAAL model determines the
following two types of transitions between states:

Delay transitions As long as none of the invariants of the control nodes in the current
state are violated, time may progress without affecting the control node vector and
with all clock values incremented with the elapsed duration of time. In Figure 3,
from the initial state

� ����� ���� �
	�� � ��� � ���� ��� time may elapse 	�� � time
units leading to the state

� ����� ���� �
	�� 	�� � ��� 	�� � ���� ��� . However, time
cannot elapse � time units as this would violate the invariant of B0.

Action transitions If two complementary labeled edges of two different components
are enabled in a state then they can synchronize. Thus in state

� ����� ���� �
	��
	�� �
�� 	�� � ���� ��� the two components can synchronize on a leading to the
new state

� ����� ���� � �	�� � ��� � ���� ��� (note that x, y, and n have been ap-
propriately updated). If a component has an internal edge enabled, the edge can be
taken without any synchronization. Thus in state

� ����� ������ �	�� � � � � ���� �!� ,
the B–component can perform without synchronizing with A, leading to the state� ���"� ���# �
	$� � �%� � ��$�
 � .

Finally, in order to enable modeling of atomicity of transition–sequences of a par-
ticular component (i.e. without time–delay and interleaving of other components) nodes
may be marked as committed (indicated by a c–prefix). If in a state one of the compo-
nents is in a control node labeled as being committed, no delay is allowed to occur and
any action transition (synchronizing or not) must involve the particular component (the
component is so–to–speak committed to continue). In the state � ����� ���� � �	&� �
'�
� ��(� � � B1 is committed; thus without any delay the next transition must involve
the B–component. Hence the two first transitions of B are guaranteed to be performed
atomically. Besides ensuring atomicity, the notion of committed nodes also helps in sig-
nificantly reducing the space–consumption during verification. Channels can in addition
be defined as urgent: when two components can synchronize on an urgent channel no
further delay is allowed before communication takes place.

In this section and indeed in the modeling of the audio/video protocol presented in
the following sections, the values of all clocks are assumed to increase with identical
speed (perfect clocks). However, UPPAAL also supports analysis of timed automata with
varying and drifting time–speed of clocks. This feature was crucial in the modeling and
analysis of the Philips Audio–Control protocol [5] using UPPAAL.

UPPAAL is able to check for reachability properties, in particular whether a certain
combination of control-nodes and constraints on clock and data variables is reachable
from an initial configuration. The properties that can be analyzed are of two forms:
“A[]p” and “E<>p”, where p is a formula over clock variables, data variables, and
control-node positions. Intuitively for “A[]p” to be satisfied, all reachable states must
satisfy p. Dually, for “E<>p” to be satisfied, some reachable state must satisfy p.

)
indicated graphically by a double circled node.

4 Timed Transitions and Interrupts

In this section, we shall introduce techniques for dealing with a couple of concepts that
appear in the protocol, and which are not supported directly by the UPPAAL notation.
These concepts are on the one hand time slicing in combination with time consuming
transitions, and on the other hand prioritized interrupts. We refer to time slicing as the
activity of delegating and scheduling execution rights to processes that all run on the
same single processor. Transitions normally don’t take time in UPPAAL, but this occurs
in the protocol. Interrupts is a well known concept.

First, we give a small example illustrating what we need. Then we suggest the tech-
niques that we shall apply in the modeling of the protocol.

4.1 The Problem

Assume a system with two processes A and B running on a single processor. Assume
further, that these processes can be interrupted by an interrupt handler. The situation is
illustrated in Figure 4, which is not expressed in the UPPAAL language, but rather in
some informal extension of the language.

i := 1i := 1i := 1i := 1i := 1i := 1i := 1i := 1i := 1i := 1i := 1i := 1i := 1i := 1i := 1i := 1i := 1
(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)

j := 2j := 2j := 2j := 2j := 2j := 2j := 2j := 2j := 2j := 2j := 2j := 2j := 2j := 2j := 2j := 2j := 2
(5)(5)(5)(5)(5)(5)(5)(5)(5)(5)(5)(5)(5)(5)(5)(5)(5)

v := 1v := 1v := 1v := 1v := 1v := 1v := 1v := 1v := 1v := 1v := 1v := 1v := 1v := 1v := 1v := 1v := 1
(5)(5)(5)(5)(5)(5)(5)(5)(5)(5)(5)(5)(5)(5)(5)(5)(5)

w := 2w := 2w := 2w := 2w := 2w := 2w := 2w := 2w := 2w := 2w := 2w := 2w := 2w := 2w := 2w := 2w := 2
(7-12)(7-12)(7-12)(7-12)(7-12)(7-12)(7-12)(7-12)(7-12)(7-12)(7-12)(7-12)(7-12)(7-12)(7-12)(7-12)(7-12)

y := 2y := 2y := 2y := 2y := 2y := 2y := 2y := 2y := 2y := 2y := 2y := 2y := 2y := 2y := 2y := 2y := 2
(5)(5)(5)(5)(5)(5)(5)(5)(5)(5)(5)(5)(5)(5)(5)(5)(5)

x := 1x := 1x := 1x := 1x := 1x := 1x := 1x := 1x := 1x := 1x := 1x := 1x := 1x := 1x := 1x := 1x := 1
(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2) aaaaaaaaaaaaaaaaa

bbbbbbbbbbbbbbbbb

cccccccccccccccccaaaaaaaaaaaaaaaaa bbbbbbbbbbbbbbbbb ccccccccccccccccc

cccccccccccccccccbbbbbbbbbbbbbbbbbaaaaaaaaaaaaaaaaa

AAAAAAAAAAAAAAAAA

BBBBBBBBBBBBBBBBB

InterruptInterruptInterruptInterruptInterruptInterruptInterruptInterruptInterruptInterruptInterruptInterruptInterruptInterruptInterruptInterruptInterrupt

Fig. 4. What we want to express

Each edge modifies a variable (A modifies x and y, B modifies v and w, and the
interrupt handler modifies i and j). These assignments only serve to identify the edges
and have no real importance for the example. Each edge is furthermore labeled with a
time slot within parenthesis (2, 5, 7-12), indicating the amount of time units the edge
takes. The slot 7-12 means anywhere between � and ��� time units.

Suppose the interrupt handler does not interrupt. Then the semantics should be the
following: A and B execute in an interleaved manner modeling the time slicing of the
processor – each transition taking the amount of time it is labeled with. No unnecessary
time is spent in intermediate nodes (except waiting for the other process to execute). At
the end, as soon as both A and B are in the node c, at least ��� (���	�
�	�
���) and at
most �� (���������������) time units will have passed.

An interrupt can occur at any moment and executes “to the end” when occurring.
That is, it goes from node a to cwithout neither A nor B being allowed to execute in the

meantime. If we assume that the interrupt handler can also interrupt, then it will change
the above numbers to �
 (��������� �) and 	 � (��������� �).

Or goal is now to formulate this in the UPPAAL language. Consider an approach where
nodes are annotated with time constraints on local clocks, expressing the time consumed
by the previous edge. This solution does not work since the two automata may consume
time “together”, and does not reflect the desired behavior, since they are supposed to
run on a single processor. Let us first model time consuming transitions, ignoring the
interrupts for a moment.

4.2 Modeling Timed Transitions

In a single processor setting it is natural to hand over time control to a single “operating
system” process. Figure 5 illustrates such a process, called Timer, using a local clock k.

k >= 7k >= 7k >= 7k >= 7k >= 7k >= 7k >= 7k >= 7k >= 7k >= 7k >= 7k >= 7k >= 7k >= 7k >= 7k >= 7k >= 7
k == 5k == 5k == 5k == 5k == 5k == 5k == 5k == 5k == 5k == 5k == 5k == 5k == 5k == 5k == 5k == 5k == 5

k == 2k == 2k == 2k == 2k == 2k == 2k == 2k == 2k == 2k == 2k == 2k == 2k == 2k == 2k == 2k == 2k == 2

k := 0k := 0k := 0k := 0k := 0k := 0k := 0k := 0k := 0k := 0k := 0k := 0k := 0k := 0k := 0k := 0k := 0

finish?finish?finish?finish?finish?finish?finish?finish?finish?finish?finish?finish?finish?finish?finish?finish?finish?

t7_12?t7_12?t7_12?t7_12?t7_12?t7_12?t7_12?t7_12?t7_12?t7_12?t7_12?t7_12?t7_12?t7_12?t7_12?t7_12?t7_12?t2?t2?t2?t2?t2?t2?t2?t2?t2?t2?t2?t2?t2?t2?t2?t2?t2? t5?t5?t5?t5?t5?t5?t5?t5?t5?t5?t5?t5?t5?t5?t5?t5?t5?

w7_12w7_12w7_12w7_12w7_12w7_12w7_12w7_12w7_12w7_12w7_12w7_12w7_12w7_12w7_12w7_12w7_12
(k <= 12)(k <= 12)(k <= 12)(k <= 12)(k <= 12)(k <= 12)(k <= 12)(k <= 12)(k <= 12)(k <= 12)(k <= 12)(k <= 12)(k <= 12)(k <= 12)(k <= 12)(k <= 12)(k <= 12)

w5w5w5w5w5w5w5w5w5w5w5w5w5w5w5w5w5
(k <= 5)(k <= 5)(k <= 5)(k <= 5)(k <= 5)(k <= 5)(k <= 5)(k <= 5)(k <= 5)(k <= 5)(k <= 5)(k <= 5)(k <= 5)(k <= 5)(k <= 5)(k <= 5)(k <= 5)

w2w2w2w2w2w2w2w2w2w2w2w2w2w2w2w2w2
(k <= 2)(k <= 2)(k <= 2)(k <= 2)(k <= 2)(k <= 2)(k <= 2)(k <= 2)(k <= 2)(k <= 2)(k <= 2)(k <= 2)(k <= 2)(k <= 2)(k <= 2)(k <= 2)(k <= 2)

c:backc:backc:backc:backc:backc:backc:backc:backc:backc:backc:backc:backc:backc:backc:backc:backc:back

gogogogogogogogogogogogogogogogogo
(k <= 0)(k <= 0)(k <= 0)(k <= 0)(k <= 0)(k <= 0)(k <= 0)(k <= 0)(k <= 0)(k <= 0)(k <= 0)(k <= 0)(k <= 0)(k <= 0)(k <= 0)(k <= 0)(k <= 0)

TimerTimerTimerTimerTimerTimerTimerTimerTimerTimerTimerTimerTimerTimerTimerTimerTimer

Fig. 5. The Timer

It has a start node, named go, in which time is constrained to not progress at all. This
means that in order for time to progress, one of the edges t2?, t5? or t7 12? must
be taken. These edges then lead to nodes where time can progress the corresponding
number of time units, where after control returns immediately (back is a committed
node just used to collect the edges) to the go node.

Now let us turn to the processes A and B, which are shown in Figure 6. These
now communicate with the Timer, asking for time slots. Every time unit T that in the
informal model, Figure 4, was in brackets (T) is now expressed as tT!. When for
example A takes the edge from node a to node b, the Timer goes into the node w2, and
stays there for � time units while A stays in node b. Hence, the time consumed by an
edge is really consumed in the node it leads to. We have, however, guaranteed that B
for example, cannot go to the node b and consume time “in parallel” since that would
require a communication with Timer, and this is not ready for that before it returns to
the node go.

When A reaches the node c, it has not yet consumed � time units (�	� �), it has only
consumed � . The � will be consumed while in node c. In order to reach a state where
we for sure know that all the time has been consumed, we add an extra d node, which
is reached by communicating finish! to the Timer. This forces the Timer to “finish”

x := 1x := 1x := 1x := 1x := 1x := 1x := 1x := 1x := 1x := 1x := 1x := 1x := 1x := 1x := 1x := 1x := 1
t2!t2!t2!t2!t2!t2!t2!t2!t2!t2!t2!t2!t2!t2!t2!t2!t2!

y := 2y := 2y := 2y := 2y := 2y := 2y := 2y := 2y := 2y := 2y := 2y := 2y := 2y := 2y := 2y := 2y := 2
t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!

finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!

finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!w := 2w := 2w := 2w := 2w := 2w := 2w := 2w := 2w := 2w := 2w := 2w := 2w := 2w := 2w := 2w := 2w := 2
t7_12!t7_12!t7_12!t7_12!t7_12!t7_12!t7_12!t7_12!t7_12!t7_12!t7_12!t7_12!t7_12!t7_12!t7_12!t7_12!t7_12!

v := 1v := 1v := 1v := 1v := 1v := 1v := 1v := 1v := 1v := 1v := 1v := 1v := 1v := 1v := 1v := 1v := 1
t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!

ddddddddddddddddd

dddddddddddddddddaaaaaaaaaaaaaaaaa bbbbbbbbbbbbbbbbb ccccccccccccccccc

cccccccccccccccccbbbbbbbbbbbbbbbbbaaaaaaaaaaaaaaaaa

AAAAAAAAAAAAAAAAA

BBBBBBBBBBBBBBBBB

Fig. 6. A and B communicating with the Timer

the last time consumption. Now we can express and verify the following true property,
where gc is a global clock variable that is never reset:

A[] (A.d and B.d) imply ((19 <= gc) and (gc <= 24))

That is, if both A and B reach noded, then they will do so within �����
�� time units. Note
that due to the design of the Timer, time cannot progress further when that happens (the
Timer will be in the go node where time cannot progress). Of course one can design a
Timer that allows time to progress freely when asked to, and that is in fact what happens
in the protocol. Basically one introduces an idle node in the Timer, that can be entered
upon request, and where time can progress without constraints.

It is possible to model such single processor time scheduling in model checkers
lacking real-time features, such as for example SPIN [15]. However, when trying to
formulate and verify properties where time ticks are summed up, such explicit modeling
easily leads to state space explosion.

4.3 Modeling Interrupts

Now we incorporate the interrupt handler. The basic idea is to give a priority to each
process, and then maintain a variable, which at any moment contains the priority cur-
rently active. Processes with a priority lower than the current cannot execute. When an
interrupt occurs, the current priority is set to a value higher than those of the processes
interrupted.

Processes A and B can for example have priority
�

while the interrupt handler gets
priority � . When the interrupt occurs, the current priority is then set to � , preventing
priority

�
processes from running. We introduce the variable cur for this purpose, see

Figure 7. The Timer stays unchanged.
Note how the variable cur occurs in guards of A and B, and how it is assigned to

by the interrupt handler. In this model, we can verify the following property to be true:

A[] (A.d and B.d and Interrupt.d) imply
(26 <= gc and gc <= 31)

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
v := 1v := 1v := 1v := 1v := 1v := 1v := 1v := 1v := 1v := 1v := 1v := 1v := 1v := 1v := 1v := 1v := 1
t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
w := 2w := 2w := 2w := 2w := 2w := 2w := 2w := 2w := 2w := 2w := 2w := 2w := 2w := 2w := 2w := 2w := 2
t7_12!t7_12!t7_12!t7_12!t7_12!t7_12!t7_12!t7_12!t7_12!t7_12!t7_12!t7_12!t7_12!t7_12!t7_12!t7_12!t7_12!

finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!

finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
y := 2y := 2y := 2y := 2y := 2y := 2y := 2y := 2y := 2y := 2y := 2y := 2y := 2y := 2y := 2y := 2y := 2
t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
x := 1x := 1x := 1x := 1x := 1x := 1x := 1x := 1x := 1x := 1x := 1x := 1x := 1x := 1x := 1x := 1x := 1
t2!t2!t2!t2!t2!t2!t2!t2!t2!t2!t2!t2!t2!t2!t2!t2!t2!

finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!

cur := 0cur := 0cur := 0cur := 0cur := 0cur := 0cur := 0cur := 0cur := 0cur := 0cur := 0cur := 0cur := 0cur := 0cur := 0cur := 0cur := 0
j := 2j := 2j := 2j := 2j := 2j := 2j := 2j := 2j := 2j := 2j := 2j := 2j := 2j := 2j := 2j := 2j := 2
t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!

cur := 1cur := 1cur := 1cur := 1cur := 1cur := 1cur := 1cur := 1cur := 1cur := 1cur := 1cur := 1cur := 1cur := 1cur := 1cur := 1cur := 1
i := 1i := 1i := 1i := 1i := 1i := 1i := 1i := 1i := 1i := 1i := 1i := 1i := 1i := 1i := 1i := 1i := 1
t2!t2!t2!t2!t2!t2!t2!t2!t2!t2!t2!t2!t2!t2!t2!t2!t2!

ddddddddddddddddd

ddddddddddddddddd

ddddddddddddddddd

aaaaaaaaaaaaaaaaa bbbbbbbbbbbbbbbbb ccccccccccccccccc

cccccccccccccccccbbbbbbbbbbbbbbbbbaaaaaaaaaaaaaaaaa

ccccccccccccccccc

bbbbbbbbbbbbbbbbb

aaaaaaaaaaaaaaaaa

AAAAAAAAAAAAAAAAA

BBBBBBBBBBBBBBBBB

InterruptInterruptInterruptInterruptInterruptInterruptInterruptInterruptInterruptInterruptInterruptInterruptInterruptInterruptInterruptInterruptInterrupt

Fig. 7. Dealing with interrupts

5 Formalization in UPPAAL

In this section, we shall formalize the system in UPPAAL. We start with an overview
of the components and their interaction via channels and shared variables. Then we
describe the IOP in detail.

5.1 Component Overview

The system consists of 7 automata, as illustrated in Figure 8. The Timer controls the
time slicing between the components using the technique described in section 4.2. In
addition, there is an environment which generates interrupts corresponding to data ar-
riving on the links; hence this environment is referred to as the Interrupt Generator.

The components communicate via channel synchronization and via shared vari-
ables. The figure illustrates the channel connections by fully drawn arcs, each going
from one component (the one that does a send “!”) to another (the one that does a re-
ceive “?”). Also, all shared variables are plotted into the figure, in italics, with dotted
lines indicating their role as message carriers, from the process that typically writes
to the variable to the process that typically reads the variable. This notation is infor-
mal, but it should give an overview of the shared variables and the role they play in
communication. Channels and variables are described below.

5.2 The Channels

The AP signals the IOP to go down by issuing an ap down! (which the IOP then con-
sumes by performing a dual ap down?). The channels ap down ack and
ap down nack correspond to the IOP’s response to such an ap down signal from
the AP. They represent the acknowledgment (ack) respectively the negative acknowl-
edgment (nack) that the closing down has succeeded respectively not succeeded. The
ap active channel is used by the IOP to request the AP to become active.

The channels reset, wait, wait int, i reset, i wait are all used to op-
erate the timer. Basically, the reset and i reset channels are used to activate the
timer, to start delivering time slots, while the wait, wait int and i wait channels
are used to dis-activate the timer, to stop delivering time slots. Different channels for re-
setting (reset and i reset) respectively waiting (wait, wait int and i wait)

LSL DriverIOP

AP Timer ti

ap_down

ap_active

ap_down_ack

ap_down_nack

reset

wait

wait_int

ti

i_reset

i_wait

ti

i_reset

i_wait

ti

AP Int
Handler

LSL Int
Handler

Kernel

Int Gen.

generated_ap_interrupt

enabled_lsl_interrupt

generated_lsl_interrupt

lsl_command

lsl_datalsl_running

sw_stand_by
sleep_op
sleeping

ap_interrupt lsl_interrupt
some_interrupt

cur

lsl_interrupt_ex

Fig. 8. The components

are needed due to different interpretations of these commands in different contexts.
Whenever activated, the timer then delivers time slots to the IOP, the LSL (Low Speed
Link) driver, and the interrupt handlers when these issue signals on the t � channels.

5.3 The Shared Variables

The interrupt generator generates interrupts corresponding to data arriving on the links.
Such an interrupt is generated by setting the variable generated lsl interrupt
to � (

�������
). The LSL interrupt handler then reacts on this by interrupting the IOP

or the driver, whichever is running. A result of such an interrupt is that the variable
lsl interrupt is set to � . The IOP reads the value of this variable, and hence is
triggered to deal with new data if it equals � . In order for the interrupt generator to gen-
erate interrupts at all, the variable enabled lsl interruptmust be � . Concerning
the AP, there is a generated ap interrupt and an ap interrupt, but there is
no enabled ap interrupt. The AP itself plays the role as AP interrupt generator,
and hence sets the generated ap interrupt to � , while the AP interrupt handler
reacts to this by setting the ap interrupt to � . The variable some interrupt is
� whenever either ap interrupt or lsl interrupt is � .

The variable cur is used to secure that an interrupt handler gets higher priority than
the process it interrupts. Note that in this sense, the IOP and the driver have the lowest
priority (�), while the LSL interrupt handler has one higher (�), and the AP interrupt
handler has the highest (�). Hence, whenever the value of cur is � , the IOP and the LSL
driver are allowed to execute. When the LSL interrupt handler starts executing, it sets

the value to � , whereby the IOP and driver are no longer allowed to execute. The AP
interrupt handler can further interrupt all the previous processes, assigning � to cur,
whereby all other processes with lower priority are denied to execute.

We said that the AP interrupt handler can interrupt the LSL interrupt handler. This
is a truth with modifications. In fact, it is not allowed to interrupt during the initializa-
tion phase of the LSL interrupt handler. This is modeled by introducing a semaphore
lsl interrupt ex. It is used to exclude the AP interrupt handler from interrupting
the LSL interrupt handler during the latter’s first activities.

The IOP sends messages to the LSL driver by assigning values to the variable
lsl command with the following meanings: � = Initialize the driver, � = Close down
the driver, and 	 = Activate the driver. After initialization of the driver, the IOP can
read the results of the driver’s activity (whether it is still running and whether there
are data or not) in the variables lsl running and lsl data. Since the model is a
reduction from a bigger model also involving the AP driver, we had early in the design
a need for maintaining a variable some running, being true if either ap running
or lsl running was true, and likewise we needed a variable some data, being
true if either lsl data or other similar variables were true. These two variables have
survived after we have reduced the model.

The three variables sw stand by, sleeping and sleep op are central to the
closing down procedure, and the interaction between the IOP and the interrupt han-
dlers. Figure 9 illustrates the relevant pieces of code in the IOP (when approaching
stand by mode), respectively the Interrupt handlers. To start with the IOP, the variable
sleep op is a kind of “emergency break” which can be “pulled” by the interrupt han-
dler. The IOP assigns

����� �
to this variable, and it has to be

����� �
before going to sleep.

The interrupt handler can change the value of sleep op “in last micro second”. Next,
the IOP assigns

��� � �
to the variable sw stand by when approaching the stand by

node. Hence this variable is
����� �

in a certain critical time zone just before closing
down

�
. When the IOP finally goes down (enters the stand by mode), the variable

sleeping becomes
��� � �

.
The value of sw stand by is used by the interrupt handlers when activated to

see whether the IOP is in its critical closing down zone. If so, they assign the value��� � 	 � to the variable sleep op, and this will then prevent the IOP from going to
sleep. The interrupt handlers also “wake up” (sleeping := 0) the IOP in case it is
sleeping (sleeping == 1). The sleeping variable is used by the interrupt handler
to direct the amount of time used to restart the IOP. If sleeping == 1 it takes 900
micro seconds, otherwise it is instantaneous. We shall see the IOP algorithm formulated
in UPPAAL below.

5.4 The IOP

The IOP, Figure 10, is obtained by refining (in an informal sense) the abstract model
presented in Figure 2. The model is refined using state refinement as well as action
refinement. By state refinement we mean that certain states (the ovals) are expanded out
to sub–transition systems with new states connected with new (labeled) arcs. We have
�

In the C-implementation, the variable sw stand by is a register informing the processor
hardware about the approaching close down.

IOP: Interrupt Handler:
sleep_op := 1; If sleeping == 1 Then
sw_stand_by := 1; ‘‘spend 900 ms’’
If sleep_op == 1 Then sleeping := 0
sleeping := 1; End;
‘‘stand by’’ If sw_stand_by == 1 Then

End; sleep_op := 0;
‘‘after interrupt’’: sw_stand_by := 0
sw_stand_by := 0 End;
‘‘go up’’

Fig. 9. The variables sw stand by, sleeping and sleep op

enclosed these new sub–systems in boxes on Figure 10 such that they can be easier
related to Figure 2. Note, however, that this is not formal UPPAAL notation. By action
refinement we mean that also arcs are expanded out to such sub–transition systems.
Concerning state refinement, we have expanded each “check driver” state into a couple
of states: driver call – representing the point where a driver has been called – and
driver return – representing the point where the driver returns. The state “check
interrupts” has been expanded out to a small transition system consisting of the four
states: insert noop, set stand by, check interrupts and check noop.

The IOP starts being active, in the node active. In this node it does not need time
slots, hence the timer is supposed to be inactive. Note that although the IOP is in the
node active, and hence intuitively is active, from a technical point of view, we don’t
see it as requiring time slots, since it does not take any transitions.

Now it can receive an ap down signal from the AP, ordering it to close down. It
then proceeds (up, left – referring to the approximate position on the figure) by reset-
ting the timer – reset!, indicating that now it wants processor time slots necessary
to close down. It then initializes the variables lsl running (to �) and lsl data
(to �) preparing the activation of the LSL driver, initially assuming that there are no
data. Note the “priority 0” guard – cur == 0 – and the time slot demand – t6! –
requiring
 micro seconds to initialize these variables. The time constant, and all other
time constants in the model, have been estimated by the protocol developers at B&O.
When the driver later returns, it will have set the variable lsl running to � , and now
the IOP can check the value of lsl data. The driver is, however, first activated with
the assignment of � (close down) to the variable lsl command in the edge leading to
the node driver call1.

In this node the IOP waits for the driver to finish its job. If at that point, in node
driver return1, lsl data equals � there is data, and the IOP must activate the
driver – lsl command is assigned the value 	 – and it must respond to the AP with a
negative acknowledgment – ap down nack!. If on the other hand lsl data equals
� , then there are no data on the link, and the IOP can proceed successfully to close
down, next checking whether there are any interrupts. First, however, it acknowledges
via an ap down ack! signal to the AP, and then goes to the node insert noop
(up, right) to check interrupts. A possible trace from here leads to the node stand by,
where the IOP is sleeping, and can only be wakened by an interrupt. The waiting for
an interrupt is done by issuing a wait int! signal to the timer just before entering
the stand by node. When an interrupt occurs thereafter, the timer will ensure that the
IOP is re-activated immediately.

ap_active!ap_active!ap_active!ap_active!ap_active!ap_active!ap_active!ap_active!ap_active!ap_active!ap_active!ap_active!ap_active!ap_active!ap_active!ap_active!ap_active!

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
wait!wait!wait!wait!wait!wait!wait!wait!wait!wait!wait!wait!wait!wait!wait!wait!wait!

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
wait!wait!wait!wait!wait!wait!wait!wait!wait!wait!wait!wait!wait!wait!wait!wait!wait!

reset!reset!reset!reset!reset!reset!reset!reset!reset!reset!reset!reset!reset!reset!reset!reset!reset!

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
t3!t3!t3!t3!t3!t3!t3!t3!t3!t3!t3!t3!t3!t3!t3!t3!t3!
sw_stand_by := 1sw_stand_by := 1sw_stand_by := 1sw_stand_by := 1sw_stand_by := 1sw_stand_by := 1sw_stand_by := 1sw_stand_by := 1sw_stand_by := 1sw_stand_by := 1sw_stand_by := 1sw_stand_by := 1sw_stand_by := 1sw_stand_by := 1sw_stand_by := 1sw_stand_by := 1sw_stand_by := 1

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
t900_1100!t900_1100!t900_1100!t900_1100!t900_1100!t900_1100!t900_1100!t900_1100!t900_1100!t900_1100!t900_1100!t900_1100!t900_1100!t900_1100!t900_1100!t900_1100!t900_1100!
lsl_command := 3lsl_command := 3lsl_command := 3lsl_command := 3lsl_command := 3lsl_command := 3lsl_command := 3lsl_command := 3lsl_command := 3lsl_command := 3lsl_command := 3lsl_command := 3lsl_command := 3lsl_command := 3lsl_command := 3lsl_command := 3lsl_command := 3

ap_down_ack!ap_down_ack!ap_down_ack!ap_down_ack!ap_down_ack!ap_down_ack!ap_down_ack!ap_down_ack!ap_down_ack!ap_down_ack!ap_down_ack!ap_down_ack!ap_down_ack!ap_down_ack!ap_down_ack!ap_down_ack!ap_down_ack!

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
t37!t37!t37!t37!t37!t37!t37!t37!t37!t37!t37!t37!t37!t37!t37!t37!t37!
enabled_lsl_interrupt := 0enabled_lsl_interrupt := 0enabled_lsl_interrupt := 0enabled_lsl_interrupt := 0enabled_lsl_interrupt := 0enabled_lsl_interrupt := 0enabled_lsl_interrupt := 0enabled_lsl_interrupt := 0enabled_lsl_interrupt := 0enabled_lsl_interrupt := 0enabled_lsl_interrupt := 0enabled_lsl_interrupt := 0enabled_lsl_interrupt := 0enabled_lsl_interrupt := 0enabled_lsl_interrupt := 0enabled_lsl_interrupt := 0enabled_lsl_interrupt := 0
generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
t640_840!t640_840!t640_840!t640_840!t640_840!t640_840!t640_840!t640_840!t640_840!t640_840!t640_840!t640_840!t640_840!t640_840!t640_840!t640_840!t640_840!
some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
t3!t3!t3!t3!t3!t3!t3!t3!t3!t3!t3!t3!t3!t3!t3!t3!t3!
some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!
some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!
some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
t7!t7!t7!t7!t7!t7!t7!t7!t7!t7!t7!t7!t7!t7!t7!t7!t7!
enabled_lsl_interrupt := 1enabled_lsl_interrupt := 1enabled_lsl_interrupt := 1enabled_lsl_interrupt := 1enabled_lsl_interrupt := 1enabled_lsl_interrupt := 1enabled_lsl_interrupt := 1enabled_lsl_interrupt := 1enabled_lsl_interrupt := 1enabled_lsl_interrupt := 1enabled_lsl_interrupt := 1enabled_lsl_interrupt := 1enabled_lsl_interrupt := 1enabled_lsl_interrupt := 1enabled_lsl_interrupt := 1enabled_lsl_interrupt := 1enabled_lsl_interrupt := 1
generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
t6!t6!t6!t6!t6!t6!t6!t6!t6!t6!t6!t6!t6!t6!t6!t6!t6!
lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0
some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0
lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1
some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
t17!t17!t17!t17!t17!t17!t17!t17!t17!t17!t17!t17!t17!t17!t17!t17!t17!
sleep_op := 1sleep_op := 1sleep_op := 1sleep_op := 1sleep_op := 1sleep_op := 1sleep_op := 1sleep_op := 1sleep_op := 1sleep_op := 1sleep_op := 1sleep_op := 1sleep_op := 1sleep_op := 1sleep_op := 1sleep_op := 1sleep_op := 1

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
wait_int!wait_int!wait_int!wait_int!wait_int!wait_int!wait_int!wait_int!wait_int!wait_int!wait_int!wait_int!wait_int!wait_int!wait_int!wait_int!wait_int!

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
t8!t8!t8!t8!t8!t8!t8!t8!t8!t8!t8!t8!t8!t8!t8!t8!t8!
sleep_op == 0sleep_op == 0sleep_op == 0sleep_op == 0sleep_op == 0sleep_op == 0sleep_op == 0sleep_op == 0sleep_op == 0sleep_op == 0sleep_op == 0sleep_op == 0sleep_op == 0sleep_op == 0sleep_op == 0sleep_op == 0sleep_op == 0

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
t3!t3!t3!t3!t3!t3!t3!t3!t3!t3!t3!t3!t3!t3!t3!t3!t3!
sleep_op == 1sleep_op == 1sleep_op == 1sleep_op == 1sleep_op == 1sleep_op == 1sleep_op == 1sleep_op == 1sleep_op == 1sleep_op == 1sleep_op == 1sleep_op == 1sleep_op == 1sleep_op == 1sleep_op == 1sleep_op == 1sleep_op == 1
sleeping := 1sleeping := 1sleeping := 1sleeping := 1sleeping := 1sleeping := 1sleeping := 1sleeping := 1sleeping := 1sleeping := 1sleeping := 1sleeping := 1sleeping := 1sleeping := 1sleeping := 1sleeping := 1sleeping := 1cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0

t8!t8!t8!t8!t8!t8!t8!t8!t8!t8!t8!t8!t8!t8!t8!t8!t8!
some_interrupt == 1some_interrupt == 1some_interrupt == 1some_interrupt == 1some_interrupt == 1some_interrupt == 1some_interrupt == 1some_interrupt == 1some_interrupt == 1some_interrupt == 1some_interrupt == 1some_interrupt == 1some_interrupt == 1some_interrupt == 1some_interrupt == 1some_interrupt == 1some_interrupt == 1

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
t2!t2!t2!t2!t2!t2!t2!t2!t2!t2!t2!t2!t2!t2!t2!t2!t2!
some_interrupt == 0some_interrupt == 0some_interrupt == 0some_interrupt == 0some_interrupt == 0some_interrupt == 0some_interrupt == 0some_interrupt == 0some_interrupt == 0some_interrupt == 0some_interrupt == 0some_interrupt == 0some_interrupt == 0some_interrupt == 0some_interrupt == 0some_interrupt == 0some_interrupt == 0

lsl_command := 3lsl_command := 3lsl_command := 3lsl_command := 3lsl_command := 3lsl_command := 3lsl_command := 3lsl_command := 3lsl_command := 3lsl_command := 3lsl_command := 3lsl_command := 3lsl_command := 3lsl_command := 3lsl_command := 3lsl_command := 3lsl_command := 3
ap_active!ap_active!ap_active!ap_active!ap_active!ap_active!ap_active!ap_active!ap_active!ap_active!ap_active!ap_active!ap_active!ap_active!ap_active!ap_active!ap_active!

cur ==0cur ==0cur ==0cur ==0cur ==0cur ==0cur ==0cur ==0cur ==0cur ==0cur ==0cur ==0cur ==0cur ==0cur ==0cur ==0cur ==0
t41_300!t41_300!t41_300!t41_300!t41_300!t41_300!t41_300!t41_300!t41_300!t41_300!t41_300!t41_300!t41_300!t41_300!t41_300!t41_300!t41_300!
some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
t1!t1!t1!t1!t1!t1!t1!t1!t1!t1!t1!t1!t1!t1!t1!t1!t1!
some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
t314!t314!t314!t314!t314!t314!t314!t314!t314!t314!t314!t314!t314!t314!t314!t314!t314!
enabled_lsl_interrupt := 0enabled_lsl_interrupt := 0enabled_lsl_interrupt := 0enabled_lsl_interrupt := 0enabled_lsl_interrupt := 0enabled_lsl_interrupt := 0enabled_lsl_interrupt := 0enabled_lsl_interrupt := 0enabled_lsl_interrupt := 0enabled_lsl_interrupt := 0enabled_lsl_interrupt := 0enabled_lsl_interrupt := 0enabled_lsl_interrupt := 0enabled_lsl_interrupt := 0enabled_lsl_interrupt := 0enabled_lsl_interrupt := 0enabled_lsl_interrupt := 0
generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!
some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!
some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
t18!t18!t18!t18!t18!t18!t18!t18!t18!t18!t18!t18!t18!t18!t18!t18!t18!
enabled_lsl_interrupt := 1enabled_lsl_interrupt := 1enabled_lsl_interrupt := 1enabled_lsl_interrupt := 1enabled_lsl_interrupt := 1enabled_lsl_interrupt := 1enabled_lsl_interrupt := 1enabled_lsl_interrupt := 1enabled_lsl_interrupt := 1enabled_lsl_interrupt := 1enabled_lsl_interrupt := 1enabled_lsl_interrupt := 1enabled_lsl_interrupt := 1enabled_lsl_interrupt := 1enabled_lsl_interrupt := 1enabled_lsl_interrupt := 1enabled_lsl_interrupt := 1

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
t6!t6!t6!t6!t6!t6!t6!t6!t6!t6!t6!t6!t6!t6!t6!t6!t6!
lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0
some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0
lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1
some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
ap_down?ap_down?ap_down?ap_down?ap_down?ap_down?ap_down?ap_down?ap_down?ap_down?ap_down?ap_down?ap_down?ap_down?ap_down?ap_down?ap_down?

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
t8!t8!t8!t8!t8!t8!t8!t8!t8!t8!t8!t8!t8!t8!t8!t8!t8!
some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
t8!t8!t8!t8!t8!t8!t8!t8!t8!t8!t8!t8!t8!t8!t8!t8!t8!
some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!
some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!
some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
t24!t24!t24!t24!t24!t24!t24!t24!t24!t24!t24!t24!t24!t24!t24!t24!t24!
sw_stand_by := 0sw_stand_by := 0sw_stand_by := 0sw_stand_by := 0sw_stand_by := 0sw_stand_by := 0sw_stand_by := 0sw_stand_by := 0sw_stand_by := 0sw_stand_by := 0sw_stand_by := 0sw_stand_by := 0sw_stand_by := 0sw_stand_by := 0sw_stand_by := 0sw_stand_by := 0sw_stand_by := 0
lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0
some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0
lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1
some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
t1!t1!t1!t1!t1!t1!t1!t1!t1!t1!t1!t1!t1!t1!t1!t1!t1!
ap_interrupt := 0ap_interrupt := 0ap_interrupt := 0ap_interrupt := 0ap_interrupt := 0ap_interrupt := 0ap_interrupt := 0ap_interrupt := 0ap_interrupt := 0ap_interrupt := 0ap_interrupt := 0ap_interrupt := 0ap_interrupt := 0ap_interrupt := 0ap_interrupt := 0ap_interrupt := 0ap_interrupt := 0
lsl_interrupt := 0lsl_interrupt := 0lsl_interrupt := 0lsl_interrupt := 0lsl_interrupt := 0lsl_interrupt := 0lsl_interrupt := 0lsl_interrupt := 0lsl_interrupt := 0lsl_interrupt := 0lsl_interrupt := 0lsl_interrupt := 0lsl_interrupt := 0lsl_interrupt := 0lsl_interrupt := 0lsl_interrupt := 0lsl_interrupt := 0
some_interrupt := 0some_interrupt := 0some_interrupt := 0some_interrupt := 0some_interrupt := 0some_interrupt := 0some_interrupt := 0some_interrupt := 0some_interrupt := 0some_interrupt := 0some_interrupt := 0some_interrupt := 0some_interrupt := 0some_interrupt := 0some_interrupt := 0some_interrupt := 0some_interrupt := 0

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
t13!t13!t13!t13!t13!t13!t13!t13!t13!t13!t13!t13!t13!t13!t13!t13!t13!
lsl_command := 2lsl_command := 2lsl_command := 2lsl_command := 2lsl_command := 2lsl_command := 2lsl_command := 2lsl_command := 2lsl_command := 2lsl_command := 2lsl_command := 2lsl_command := 2lsl_command := 2lsl_command := 2lsl_command := 2lsl_command := 2lsl_command := 2

ap_down_nack!ap_down_nack!ap_down_nack!ap_down_nack!ap_down_nack!ap_down_nack!ap_down_nack!ap_down_nack!ap_down_nack!ap_down_nack!ap_down_nack!ap_down_nack!ap_down_nack!ap_down_nack!ap_down_nack!ap_down_nack!ap_down_nack!

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!
ap_interrupt := 0ap_interrupt := 0ap_interrupt := 0ap_interrupt := 0ap_interrupt := 0ap_interrupt := 0ap_interrupt := 0ap_interrupt := 0ap_interrupt := 0ap_interrupt := 0ap_interrupt := 0ap_interrupt := 0ap_interrupt := 0ap_interrupt := 0ap_interrupt := 0ap_interrupt := 0ap_interrupt := 0
lsl_interrupt := 0lsl_interrupt := 0lsl_interrupt := 0lsl_interrupt := 0lsl_interrupt := 0lsl_interrupt := 0lsl_interrupt := 0lsl_interrupt := 0lsl_interrupt := 0lsl_interrupt := 0lsl_interrupt := 0lsl_interrupt := 0lsl_interrupt := 0lsl_interrupt := 0lsl_interrupt := 0lsl_interrupt := 0lsl_interrupt := 0
some_interrupt := 0some_interrupt := 0some_interrupt := 0some_interrupt := 0some_interrupt := 0some_interrupt := 0some_interrupt := 0some_interrupt := 0some_interrupt := 0some_interrupt := 0some_interrupt := 0some_interrupt := 0some_interrupt := 0some_interrupt := 0some_interrupt := 0some_interrupt := 0some_interrupt := 0

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
t300!t300!t300!t300!t300!t300!t300!t300!t300!t300!t300!t300!t300!t300!t300!t300!t300!
lsl_command := 1lsl_command := 1lsl_command := 1lsl_command := 1lsl_command := 1lsl_command := 1lsl_command := 1lsl_command := 1lsl_command := 1lsl_command := 1lsl_command := 1lsl_command := 1lsl_command := 1lsl_command := 1lsl_command := 1lsl_command := 1lsl_command := 1

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!
lsl_command := 2lsl_command := 2lsl_command := 2lsl_command := 2lsl_command := 2lsl_command := 2lsl_command := 2lsl_command := 2lsl_command := 2lsl_command := 2lsl_command := 2lsl_command := 2lsl_command := 2lsl_command := 2lsl_command := 2lsl_command := 2lsl_command := 2

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
t1!t1!t1!t1!t1!t1!t1!t1!t1!t1!t1!t1!t1!t1!t1!t1!t1!
some_interrupt == 1some_interrupt == 1some_interrupt == 1some_interrupt == 1some_interrupt == 1some_interrupt == 1some_interrupt == 1some_interrupt == 1some_interrupt == 1some_interrupt == 1some_interrupt == 1some_interrupt == 1some_interrupt == 1some_interrupt == 1some_interrupt == 1some_interrupt == 1some_interrupt == 1

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
wait!wait!wait!wait!wait!wait!wait!wait!wait!wait!wait!wait!wait!wait!wait!wait!wait!

s_actives_actives_actives_actives_actives_actives_actives_actives_actives_actives_actives_actives_actives_actives_actives_actives_active

back_to_activeback_to_activeback_to_activeback_to_activeback_to_activeback_to_activeback_to_activeback_to_activeback_to_activeback_to_activeback_to_activeback_to_activeback_to_activeback_to_activeback_to_activeback_to_activeback_to_active

enter_activeenter_activeenter_activeenter_activeenter_activeenter_activeenter_activeenter_activeenter_activeenter_activeenter_activeenter_activeenter_activeenter_activeenter_activeenter_activeenter_active

down_receiveddown_receiveddown_receiveddown_receiveddown_receiveddown_receiveddown_receiveddown_receiveddown_receiveddown_receiveddown_receiveddown_receiveddown_receiveddown_receiveddown_receiveddown_receiveddown_received

set_stand_byset_stand_byset_stand_byset_stand_byset_stand_byset_stand_byset_stand_byset_stand_byset_stand_byset_stand_byset_stand_byset_stand_byset_stand_byset_stand_byset_stand_byset_stand_byset_stand_by

issue_active_commandsissue_active_commandsissue_active_commandsissue_active_commandsissue_active_commandsissue_active_commandsissue_active_commandsissue_active_commandsissue_active_commandsissue_active_commandsissue_active_commandsissue_active_commandsissue_active_commandsissue_active_commandsissue_active_commandsissue_active_commandsissue_active_commands

down_verifieddown_verifieddown_verifieddown_verifieddown_verifieddown_verifieddown_verifieddown_verifieddown_verifieddown_verifieddown_verifieddown_verifieddown_verifieddown_verifieddown_verifieddown_verifieddown_verified
disable_lsl_interruptdisable_lsl_interruptdisable_lsl_interruptdisable_lsl_interruptdisable_lsl_interruptdisable_lsl_interruptdisable_lsl_interruptdisable_lsl_interruptdisable_lsl_interruptdisable_lsl_interruptdisable_lsl_interruptdisable_lsl_interruptdisable_lsl_interruptdisable_lsl_interruptdisable_lsl_interruptdisable_lsl_interruptdisable_lsl_interrupt

driver_return1driver_return1driver_return1driver_return1driver_return1driver_return1driver_return1driver_return1driver_return1driver_return1driver_return1driver_return1driver_return1driver_return1driver_return1driver_return1driver_return1

driver_call1driver_call1driver_call1driver_call1driver_call1driver_call1driver_call1driver_call1driver_call1driver_call1driver_call1driver_call1driver_call1driver_call1driver_call1driver_call1driver_call1

enable_lsl_interruptenable_lsl_interruptenable_lsl_interruptenable_lsl_interruptenable_lsl_interruptenable_lsl_interruptenable_lsl_interruptenable_lsl_interruptenable_lsl_interruptenable_lsl_interruptenable_lsl_interruptenable_lsl_interruptenable_lsl_interruptenable_lsl_interruptenable_lsl_interruptenable_lsl_interruptenable_lsl_interrupt

going_downgoing_downgoing_downgoing_downgoing_downgoing_downgoing_downgoing_downgoing_downgoing_downgoing_downgoing_downgoing_downgoing_downgoing_downgoing_downgoing_down
insert_noopinsert_noopinsert_noopinsert_noopinsert_noopinsert_noopinsert_noopinsert_noopinsert_noopinsert_noopinsert_noopinsert_noopinsert_noopinsert_noopinsert_noopinsert_noopinsert_noop

w_stand_byw_stand_byw_stand_byw_stand_byw_stand_byw_stand_byw_stand_byw_stand_byw_stand_byw_stand_byw_stand_byw_stand_byw_stand_byw_stand_byw_stand_byw_stand_byw_stand_by

check_noopcheck_noopcheck_noopcheck_noopcheck_noopcheck_noopcheck_noopcheck_noopcheck_noopcheck_noopcheck_noopcheck_noopcheck_noopcheck_noopcheck_noopcheck_noopcheck_noop

check_interruptscheck_interruptscheck_interruptscheck_interruptscheck_interruptscheck_interruptscheck_interruptscheck_interruptscheck_interruptscheck_interruptscheck_interruptscheck_interruptscheck_interruptscheck_interruptscheck_interruptscheck_interruptscheck_interrupts

send_active_commandsend_active_commandsend_active_commandsend_active_commandsend_active_commandsend_active_commandsend_active_commandsend_active_commandsend_active_commandsend_active_commandsend_active_commandsend_active_commandsend_active_commandsend_active_commandsend_active_commandsend_active_commandsend_active_command
driver_return3driver_return3driver_return3driver_return3driver_return3driver_return3driver_return3driver_return3driver_return3driver_return3driver_return3driver_return3driver_return3driver_return3driver_return3driver_return3driver_return3

clear_lsl_interruptclear_lsl_interruptclear_lsl_interruptclear_lsl_interruptclear_lsl_interruptclear_lsl_interruptclear_lsl_interruptclear_lsl_interruptclear_lsl_interruptclear_lsl_interruptclear_lsl_interruptclear_lsl_interruptclear_lsl_interruptclear_lsl_interruptclear_lsl_interruptclear_lsl_interruptclear_lsl_interrupt

driver_call3driver_call3driver_call3driver_call3driver_call3driver_call3driver_call3driver_call3driver_call3driver_call3driver_call3driver_call3driver_call3driver_call3driver_call3driver_call3driver_call3

re_enable_lsl_interruptre_enable_lsl_interruptre_enable_lsl_interruptre_enable_lsl_interruptre_enable_lsl_interruptre_enable_lsl_interruptre_enable_lsl_interruptre_enable_lsl_interruptre_enable_lsl_interruptre_enable_lsl_interruptre_enable_lsl_interruptre_enable_lsl_interruptre_enable_lsl_interruptre_enable_lsl_interruptre_enable_lsl_interruptre_enable_lsl_interruptre_enable_lsl_interrupt

noisenoisenoisenoisenoisenoisenoisenoisenoisenoisenoisenoisenoisenoisenoisenoisenoise

activeactiveactiveactiveactiveactiveactiveactiveactiveactiveactiveactiveactiveactiveactiveactiveactive

driver_return2driver_return2driver_return2driver_return2driver_return2driver_return2driver_return2driver_return2driver_return2driver_return2driver_return2driver_return2driver_return2driver_return2driver_return2driver_return2driver_return2

driver_call2driver_call2driver_call2driver_call2driver_call2driver_call2driver_call2driver_call2driver_call2driver_call2driver_call2driver_call2driver_call2driver_call2driver_call2driver_call2driver_call2

wake_upwake_upwake_upwake_upwake_upwake_upwake_upwake_upwake_upwake_upwake_upwake_upwake_upwake_upwake_upwake_upwake_up

clear_interruptsclear_interruptsclear_interruptsclear_interruptsclear_interruptsclear_interruptsclear_interruptsclear_interruptsclear_interruptsclear_interruptsclear_interruptsclear_interruptsclear_interruptsclear_interruptsclear_interruptsclear_interruptsclear_interrupts

issue_down_lslissue_down_lslissue_down_lslissue_down_lslissue_down_lslissue_down_lslissue_down_lslissue_down_lslissue_down_lslissue_down_lslissue_down_lslissue_down_lslissue_down_lslissue_down_lslissue_down_lslissue_down_lslissue_down_lsl

send_nacksend_nacksend_nacksend_nacksend_nacksend_nacksend_nacksend_nacksend_nacksend_nacksend_nacksend_nacksend_nacksend_nacksend_nacksend_nacksend_nack

clear_intclear_intclear_intclear_intclear_intclear_intclear_intclear_intclear_intclear_intclear_intclear_intclear_intclear_intclear_intclear_intclear_int

issue_lsl_upissue_lsl_upissue_lsl_upissue_lsl_upissue_lsl_upissue_lsl_upissue_lsl_upissue_lsl_upissue_lsl_upissue_lsl_upissue_lsl_upissue_lsl_upissue_lsl_upissue_lsl_upissue_lsl_upissue_lsl_upissue_lsl_up

re_issue_lsl_downre_issue_lsl_downre_issue_lsl_downre_issue_lsl_downre_issue_lsl_downre_issue_lsl_downre_issue_lsl_downre_issue_lsl_downre_issue_lsl_downre_issue_lsl_downre_issue_lsl_downre_issue_lsl_downre_issue_lsl_downre_issue_lsl_downre_issue_lsl_downre_issue_lsl_downre_issue_lsl_down

stand_bystand_bystand_bystand_bystand_bystand_bystand_bystand_bystand_bystand_bystand_bystand_bystand_bystand_bystand_bystand_bystand_by

now_waitnow_waitnow_waitnow_waitnow_waitnow_waitnow_waitnow_waitnow_waitnow_waitnow_waitnow_waitnow_waitnow_waitnow_waitnow_waitnow_wait

Power_Down_IOPPower_Down_IOPPower_Down_IOPPower_Down_IOPPower_Down_IOPPower_Down_IOPPower_Down_IOPPower_Down_IOPPower_Down_IOPPower_Down_IOPPower_Down_IOPPower_Down_IOPPower_Down_IOPPower_Down_IOPPower_Down_IOPPower_Down_IOPPower_Down_IOP

Fig. 10. The IOP

If on the other hand, before reaching the stand by node, an interrupt has already
occurred, then the IOP will avoid going into that node and instead go directly to the
wake up node. Hence, in this node we assume that an interrupt has occurred, and now
the LSL driver has to be re-started, since apparently there must be data. This means re-
initializing the variables lsl running and lsl data, and then assigning the value
� (initialize) to lsl command. In the node driver call2, the IOP then waits for
the LSL driver to return. If there is data – lsl data equals � – the AP is asked to
become active – ap active! – and the IOP goes into the node active. Note that
when entering this node, a wait! signal is issued to the timer to dis-activate it. If on the
other hand there are no data – lsl data equals � – then what has been encountered
is noise, and the node noise is entered. In this node the IOP wants to close down, but
before doing this, the driver is asked to close down – lsl command is assigned the
value � . The IOP then waits in the node driver return3 for the drivers response.

Now, if there is data – lsl data equals � the AP is activated – ap active! –
and the node active is entered. If on the other hand there are no data – lsl data
equals � – then the IOP returns to the node insert noop (up, right), ready to check
the interrupts again, and close down (if an interrupt does not occur, etc.).

Note that some transitions labeled with channel communications are not labeled
with the priority guard cur == 0. These channels are elsewhere defined as urgent,
meaning that communication must take place immediately whenever enabled.

6 Verification of Selected Properties

In this section a collection of properties will be formulated and verified using the UP-
PAAL logic and verification tool. In order to verify these properties, a set of techniques
for annotating the model and for defining observer automata have been applied. These
techniques are presented first. Then follows the formulation and verification of the in-
dividual properties of which there are 15.

6.1 Model Annotation and Test Automata

Amongst the properties formulated by B&O, in particular three kinds were typical and
needed special techniques. The general principle behind the three techniques, to be de-
scribed below, is to annotate the model by adding new variables or communication
actions, and then observe these, either by mentioning the variables in the formulae to be
verified (the first two techniques) or by letting the new communication actions synchro-
nize with a furthermore added observer automaton (the third technique). The need for
these techniques is caused by the existing logic in which it only is possible to state prop-
erties like: “A[]p” and “E<>p”, where p is an atomic predicate over program variables
and nodes (hence no nesting of modal operators). Theoretical as well as practical work
is currently undertaken to extend the UPPAAL logic, defining translations into model
annotations and observers as outlined below.
The FLAG Technique The first technique, called the FLAG technique for later refer-
ence, is illustrated in Figure 11. Suppose we have an automaton A containing two states
(amongst others): a and b, and suppose we want to verify, that “there is a path from a
to b”.

searched pathsearched pathsearched pathsearched pathsearched pathsearched pathsearched pathsearched pathsearched pathsearched pathsearched pathsearched pathsearched pathsearched pathsearched pathsearched pathsearched path

a_reached := 1a_reached := 1a_reached := 1a_reached := 1a_reached := 1a_reached := 1a_reached := 1a_reached := 1a_reached := 1a_reached := 1a_reached := 1a_reached := 1a_reached := 1a_reached := 1a_reached := 1a_reached := 1a_reached := 1
aaaaaaaaaaaaaaaaa

bbbbbbbbbbbbbbbbb bbbbbbbbbbbbbbbbb

aaaaaaaaaaaaaaaaa

AAAAAAAAAAAAAAAAA

There must be a path from a to bThere must be a path from a to bThere must be a path from a to bThere must be a path from a to bThere must be a path from a to bThere must be a path from a to bThere must be a path from a to bThere must be a path from a to bThere must be a path from a to bThere must be a path from a to bThere must be a path from a to bThere must be a path from a to bThere must be a path from a to bThere must be a path from a to bThere must be a path from a to bThere must be a path from a to bThere must be a path from a to b

Annotated_AAnnotated_AAnnotated_AAnnotated_AAnnotated_AAnnotated_AAnnotated_AAnnotated_AAnnotated_AAnnotated_AAnnotated_AAnnotated_AAnnotated_AAnnotated_AAnnotated_AAnnotated_AAnnotated_A

E<> b and a_reached == 1E<> b and a_reached == 1E<> b and a_reached == 1E<> b and a_reached == 1E<> b and a_reached == 1E<> b and a_reached == 1E<> b and a_reached == 1E<> b and a_reached == 1E<> b and a_reached == 1E<> b and a_reached == 1E<> b and a_reached == 1E<> b and a_reached == 1E<> b and a_reached == 1E<> b and a_reached == 1E<> b and a_reached == 1E<> b and a_reached == 1E<> b and a_reached == 1

Fig. 11. Automaton A and its annotation

Note, that the current logic does not allow nested modal operators, hence it is for
example not possible to state this as: “E<> (a and E<>b)” saying that there exists

a path such that eventually node a is reached and from there node b can be reached. The
technique consists of annotating automaton A, obtaining automaton Annotated A, by
adding a boolean flag variable a reached, which initially has the value � , and which
is assigned the value � when passing through a. The property can now be formally
stated as follows: “E<>(b and a reached == 1)”. That is, eventually node b is
reached, after having passed through node a.

The DEBT technique The second technique, called the DEBT technique, is illustrated
in Figure 12. Suppose we have an automaton B containing three states (amongst others):
a, b and x, and suppose we want to verify, that “every path from a to b must pass
through x”.

wrong pathwrong pathwrong pathwrong pathwrong pathwrong pathwrong pathwrong pathwrong pathwrong pathwrong pathwrong pathwrong pathwrong pathwrong pathwrong pathwrong path

good pathgood pathgood pathgood pathgood pathgood pathgood pathgood pathgood pathgood pathgood pathgood pathgood pathgood pathgood pathgood pathgood path

debt := 1debt := 1debt := 1debt := 1debt := 1debt := 1debt := 1debt := 1debt := 1debt := 1debt := 1debt := 1debt := 1debt := 1debt := 1debt := 1debt := 1 debt := 1debt := 1debt := 1debt := 1debt := 1debt := 1debt := 1debt := 1debt := 1debt := 1debt := 1debt := 1debt := 1debt := 1debt := 1debt := 1debt := 1

debt := 0debt := 0debt := 0debt := 0debt := 0debt := 0debt := 0debt := 0debt := 0debt := 0debt := 0debt := 0debt := 0debt := 0debt := 0debt := 0debt := 0

wrong pathwrong pathwrong pathwrong pathwrong pathwrong pathwrong pathwrong pathwrong pathwrong pathwrong pathwrong pathwrong pathwrong pathwrong pathwrong pathwrong path

good pathgood pathgood pathgood pathgood pathgood pathgood pathgood pathgood pathgood pathgood pathgood pathgood pathgood pathgood pathgood pathgood path

N3N3N3N3N3N3N3N3N3N3N3N3N3N3N3N3N3

N1N1N1N1N1N1N1N1N1N1N1N1N1N1N1N1N1 N2N2N2N2N2N2N2N2N2N2N2N2N2N2N2N2N2aaaaaaaaaaaaaaaaa

xxxxxxxxxxxxxxxxx

bbbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbbb

aaaaaaaaaaaaaaaaa

xxxxxxxxxxxxxxxxx

Annotated_BAnnotated_BAnnotated_BAnnotated_BAnnotated_BAnnotated_BAnnotated_BAnnotated_BAnnotated_BAnnotated_BAnnotated_BAnnotated_BAnnotated_BAnnotated_BAnnotated_BAnnotated_BAnnotated_B

A[] b imply debt == 0A[] b imply debt == 0A[] b imply debt == 0A[] b imply debt == 0A[] b imply debt == 0A[] b imply debt == 0A[] b imply debt == 0A[] b imply debt == 0A[] b imply debt == 0A[] b imply debt == 0A[] b imply debt == 0A[] b imply debt == 0A[] b imply debt == 0A[] b imply debt == 0A[] b imply debt == 0A[] b imply debt == 0A[] b imply debt == 0

BBBBBBBBBBBBBBBBB

Every path from a to b must pass xEvery path from a to b must pass xEvery path from a to b must pass xEvery path from a to b must pass xEvery path from a to b must pass xEvery path from a to b must pass xEvery path from a to b must pass xEvery path from a to b must pass xEvery path from a to b must pass xEvery path from a to b must pass xEvery path from a to b must pass xEvery path from a to b must pass xEvery path from a to b must pass xEvery path from a to b must pass xEvery path from a to b must pass xEvery path from a to b must pass xEvery path from a to b must pass x

Fig. 12. Automaton B and its annotation

In an imagined extended logic this could be formulated as follows:
“A[] (a imply ((not b) Until x))” saying that if at any time a is reached,
then “not b” will hold until x has been reached � . The technique consists of annotating
automaton B, obtaining automaton Annotated B, by adding a boolean variable debt,
which initially has the value � , and which is assigned the value � when passing through
a. Furthermore, when passing through x it is reset to � – the debt has been “cashed”.
The property can now be formally stated as follows: “A[] b imply debt == 0”.
That is, if at any point node b is reached, then debt must not be � , since that would
indicate that node a had been reached before, but not x in between.

The OBSERVER Technique The last technique, called the OBSERVER technique, is il-
lustrated in Figure 13. Suppose we have an automaton C containing two nodes (amongst
others): a and b, and suppose we want to verify, that “from node a, node b must be
reached within

�
time units”.

In an extended logic this could be formulated as follows: “A[] (a imply A<T>
b)” saying that if at any time a is reached, then eventually – within

�
time units – node

b will be reached. The technique consists of annotating automaton C, obtaining au-
tomaton Annotated C, by adding two kinds of communication actions, each of which

�
Note that the Until operator here must be weak in the sense that node x need not be reached
at all, and hence node b need not be reached neither, which is what we want.

end!

begin!begin!begin!begin!begin!begin!begin!begin!begin!begin!begin!begin!begin!begin!begin!begin!begin!

begin?begin?begin?begin?begin?begin?begin?begin?begin?begin?begin?begin?begin?begin?begin?begin?begin?
c := 0c := 0c := 0c := 0c := 0c := 0c := 0c := 0c := 0c := 0c := 0c := 0c := 0c := 0c := 0c := 0c := 0

c == Tc == Tc == Tc == Tc == Tc == Tc == Tc == Tc == Tc == Tc == Tc == Tc == Tc == Tc == Tc == Tc == Tend?end?end?end?end?end?end?end?end?end?end?end?end?end?end?end?end?

bbbbbbbbbbbbbbbbb

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

bbbbbbbbbbbbbbbbb

startstartstartstartstartstartstartstartstartstartstartstartstartstartstartstartstart

waitwaitwaitwaitwaitwaitwaitwaitwaitwaitwaitwaitwaitwaitwaitwaitwait
(c <= T)(c <= T)(c <= T)(c <= T)(c <= T)(c <= T)(c <= T)(c <= T)(c <= T)(c <= T)(c <= T)(c <= T)(c <= T)(c <= T)(c <= T)(c <= T)(c <= T)

goodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgood badbadbadbadbadbadbadbadbadbadbadbadbadbadbadbadbad

CCCCCCCCCCCCCCCCC

From a to b in within TFrom a to b in within TFrom a to b in within TFrom a to b in within TFrom a to b in within TFrom a to b in within TFrom a to b in within TFrom a to b in within TFrom a to b in within TFrom a to b in within TFrom a to b in within TFrom a to b in within TFrom a to b in within TFrom a to b in within TFrom a to b in within TFrom a to b in within TFrom a to b in within T

Annotated_CAnnotated_CAnnotated_CAnnotated_CAnnotated_CAnnotated_CAnnotated_CAnnotated_CAnnotated_CAnnotated_CAnnotated_CAnnotated_CAnnotated_CAnnotated_CAnnotated_CAnnotated_CAnnotated_C ObserverObserverObserverObserverObserverObserverObserverObserverObserverObserverObserverObserverObserverObserverObserverObserverObserver

A[] not badA[] not badA[] not badA[] not badA[] not badA[] not badA[] not badA[] not badA[] not badA[] not badA[] not badA[] not badA[] not badA[] not badA[] not badA[] not badA[] not bad

Fig. 13. Automaton C, its annotation and observer

communicates with an added observer that measures time. Let’s first look at Anno-
tated C. When in node a, a begin! signal can be issued, telling the observer to start
measure time. When reaching node b, no matter along which path, an end! signal is is-
sued, telling the observer to stop measure time. The channel end is declared as urgent,
hence it will be taken as soon as node b is reached.

The Observer automaton rests in the start node until it receives a begin? signal
(node a reached), where after it initializes its local clock c and enters the node wait
where time can progress. Time can, however, only progress � time units due to the
node invariant, where after the node bad is entered. If on the other hand an end?
signal is received before that, then the node good is entered. The property can now be
formally stated as a property of the observer: “A[] not bad”. That is, the Observer
will never reach node bad: an end? signal will always be received (b reached) before

� time units.

6.2 Property Verification

In this section we shall present the results of analyzing in UPPAAL various desired prop-
erties. The properties as directly formulated by B&O are listed below, with explanatory
comments in brackets. The listing is just supposed to give the reader a general feeling
of the kinds of properties formulated.

1. sleeping must not change from 0 to 1 while sleep op has the value 0. (The IOP must
not go to sleep if there has been an interrupt – see Figure 9 for an explanation of these
variables.)

2. There must be a path from active to stand by and vice versa. (It must be possible for
the IOP to switch between its two final states.)

3. Every path from active to noise must pass through stand by (The IOP must have
been asleep before reaching the noise state where it on its way up due to an interrupt
discovers that the interrupt is “false”, and hence caused by noise only.)

4. The variable sleeping must not change from 0 to 1 while lsl interrupt is 1 or
ap interrupt is 1 (The IOP must not go to sleep as long as there is an untreated inter-
rupt.)

5. The shortest way from driver return1 to driver call2 does not take more than
1500 � s (If the IOP on its way down verifies that the link is empty by calling the driver, and

then immediately thereafter data arrive (an interrupt occurs) no more than ��������� s must
pass before the driver is called again.)

6. The shortest way from driver return1 to active does not take more than 1500 � s (If
the IOP on its way down discovers data on the link by calling the driver, then no more than
���	���
� s must pass before the IOP is active again.)

7. The shortest way from driver return3 to driver call2 does not take more than
1500 � s (Like 5, but in a different place in the protocol’s execution.)

8. The shortest way from driver return3 to active does not take more than 1500 � s
(Like 6, but in a different place in the protocol’s execution.)

9. If the last value of the variable lsl command has been 1 or 3 (driver starting commands),
then the value of sleeping must not change from 0 to 1 (If the last command issued to the
driver was a “start command”, then the IOP must not go to sleep.)

10. If the last value of lsl command has been 3 (activate driver), then the next value must not
be 1 (initialize driver), and vice versa (In between two driver starting commands must come
a driver closing command.)

11. No more than 1500 � s must pass from an interrupt occurs until all drivers are active

12. It must be possible for both interrupt handlers to want to assign � to sleep op at the same
time, while in addition this variable’s value is already � (Intuition missing – “technical”
property.)

13. If both interrupt handlers want to assign � to sleep op at the same time, then the IOP will
be in one of the nodes: set stand by, check interrupts, check noop,
w stand by, stand by, or wake up (If both an LSL and an AP interrupt occur, and both
interrupt handlers believe that the IOP is approaching stand by mode, then this is the case.)

14. It must be possible to come from the node noise to the node stand by (In case IOP has
discovered noise on the link, it will reach stand by mode and go to sleep, unless data arrive.)

15. I should not be possible to come from the node stand by to the node active without
synchronizing on the channel ap active (The IOP cannot get from stand by mode to
active mode without activating the AP.)

Figure 14 shows the verification results, indicating the outcome (satisfied or not)
and the verification technique used. Those properties not verified using any of the three
techniques outlined in section 6.1 have been verified using other and simpler techniques:
“trivial” means the property was seen correct without verification. “formula” means that
the property could be directly stated in the UPPAAL temporal logic. Finally, “formula
+ aux. variable” means that by adding an additional variable being updated in appro-
priate places, the property could be directly stated in the UPPAAL temporal logic. The
properties were verified using UPPAAL version � � � � from March 1998, on a Sun Ultra
Sparc 60 with � � � MB main memory.

Properties 	 and � � turned out not to be satisfied, and after having examined the
error traces B&O recognized that these properties were wrongly formulated and hence
the “error” traces showed valid behaviors.

Properties � – � , on the other hand, are interesting in the sense that their verifications
failed and caused B&O to reconsider their design. In particular property � gave an
error trace, where a single LSL interrupt and 18 AP interrupts, all consuming time, are
generated before the next driver call. As a result, B&O decided to only allow one AP
interrupt to occur in their implementation.

No. Satisfied? Technique Comment Memory Time
(MB) (min:sec)

1 YES trivial
2 YES FLAG 5.3 0:5
3 NO DEBT should not be satisfied 4.1 0:2
4 YES formula 8.2 0:9
5 NO OBSERVER 18 AP interrupts causes error 36.0 1:42
6 NO OBSERVER 24 AP interrupts causes error 22.0 0:56
7 ? OBSERVER state explosion
8 NO OBSERVER 79 AP interrupts causes error 157.0 33:39
9 YES formula + aux. variable 8.3 0:9
10 YES formula + aux. variable 8.7 0:25
11 YES OBSERVER 16.0 0:41
12 NO formula should not be satisfied 7.9 0:8
13 YES formula 8.2 0:9
14 YES FLAG 8.0 0:8
15 YES trivial

Fig. 14. Verification results

7 Conclusion

During a period of 3 weeks, a model of B&O’s Power Down protocol was developed
and verified using the UPPAAL language and model checker. The first week consisted
of an intense collaboration between AAU and B&O, where the B&O representative vis-
ited AAU. During this week, a first sketch of the model was written down in UPPAAL’s
language. The model was based on an initial design sketch made by the company rep-
resentative. The work carried out during the following two weeks was mainly carried
out by AAU. Hence, during the second week, a technique was introduced for dealing
with timed transitions and interrupts. During this same week, the model was reduced by
omitting certain components in order to obtain a model being verifiable within reason-
able time and memory space. In other words, at the end of the second week, a model
was produced that was ready for verification. At the beginning of the third (and last)
week, various properties to be verified were formulated by B&O in natural language.
These were then translated into the UPPAAL temporal logic, together with various mod-
ifications to the model, and all verifications were then carried out.

After the collaboration, the company made a C-code implementation, and after a
testing phase (which did not reveal any design errors), the implementation is by now
ready to be put into operation in the new company product.

During the development of models, we found that the notion of timed automata
and their graphical representation served extremely well as a communication medium
between the industrial protocol designer and the tool expert doing the simulation and
verification. In addition, the graphical simulation features of UPPAAL lead to fast de-
tection of (obvious) errors in the early models.

The protocol was verified correct wrt. the 15 properties formulated by B&O, and
although no bugs were identified, various critical time constants were identified, which
should be obeyed in order to keep the protocol correct. Various unexpected, but correct,
behaviors were furthermore demonstrated, challenging the understanding of the pro-
tocol. Overall, the experience appeared to increase B&O’s confidence in their design.
The fact that 3 errors were caught during the modeling phase suggests that just spec-

ifying a system can be very informative. In fact, B&O claimed they had got a better
understanding of their system this way.

The collaboration has been beneficial for both partners: B&O now considers tools
like UPPAAL as viable means to improve the design process for time-critical software.
Also, in order to model the system, we have developed techniques for modeling timed
transitions and prioritized interrupts. A timed transition is a transition which consumes
time, like code in a program which takes time to execute. It is a special circumstance,
that several processes run on a single processor. To the best of our knowledge, such
techniques have not been presented elsewhere.

What concerns the UPPAAL tool set, we anticipate investigating techniques for ver-
sion control, (keeping track of several related models), and we consider tool support for
defining abstractions. Both themes appear non-trivial in fact. Concerning the UPPAAL

language, a technical contribution of the work is a way of modeling timed transitions
and interrupts in a setting where several processes share one processor. In the forth-
coming new version of UPPAAL, the introduction of parameterized timed automatons
will support a more structural way to define time consuming transitions than we have
presented in this paper. In [11], the problem of supporting task scheduling is treated. It
is likely that this work will be included in later versions of UPPAAL.

In this work, we have sketched a number of patterns which may be used to define
properties of real-time systems. In [1, 2] the limits of UPPAAL’s model checking lan-
guage are characterized. In future versions of UPPAAL, its timed logic will be modified
according to these results - thereby supporting the definition of the patterns in a more
direct way.

Acknowledgments The B&O representative was Johnny Kudahl, who we thank for
being extremely collaborative and productive, as well during the model building as in
formulating the properties to be verified. Also thanks to the reviewers.

References

1. L. Aceto, A. Bergueno, and K. G. Larsen. Model Checking via Reachability Testing for
Timed Automata. In B. Steffen, editor, Proceedings of TACAS’98, volume 1384 of Lecture
Notes in Computer Science, pages 263–280, 1998.

2. L. Aceto, P. Bouyer, A. Burgueno, and K. G. Larsen. The Limit of Testing for Timed Au-
tomata. In Proceedings of FST TCS’98, Lecture Notes in Computer Science, 1998.

3. R. Alur, C. Courcoubetis, and D. Dill. Model-checking for Real-Time Systems. In Proc. of
Logic in Computer Science, pages 414–425. IEEE Computer Society Press, 1990.

4. R. Alur and D. Dill. Automata for Modelling Real-Time Systems. In Proc. of ICALP’90,
volume 443 of Lecture Notes in Computer Science, 1990.

5. J. Bengtsson, D. Griffioen, K. Kristoffersen, K. G. Larsen, F. Larsson, P. Pettersson, and
W. Yi. Verification of an Audio Protocol with Bus Collision Using UPPAAL. In Proc. of
CAV’96, volume 1102 of Lecture Notes in Computer Science. Springer–Verlag, 1996.

6. J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson, and W. Yi. UPPAAL — A Tool Suite
for Symbolic and Compositional Verification of Real-Time Systems. In Proc. of the 1st
Workshop on Tools and Algorithms for the Construction and Analysis of Systems, volume
1019 of Lecture Notes in Computer Science. Springer–Verlag, May 1995.

7. J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson, and W. Yi. UPPAAL in 1995. In
Proc. of the 2nd Workshop on Tools and Algorithms for the Construction and Analysis of

Systems, number 1055 in Lecture Notes in Computer Science, pages 431–434. Springer–
Verlag, March 1996.

8. A. Bouali, A. Ressouche, and V. Roy R. de Simone. The FC2Toolset. Lecture Notes in
Computer Science, 1102, 1996.

9. P.R. D’Argenio, J.-P. Katoen, T. Ruys, and J. Tretmans. Modelling and Verifying a Bounded
Retransmission Protocol. In Proc. of COST 247, International Workshop on Applied Formal
Methods in System Design, 1996.

10. C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool KRONOS. In Hybrid Systems
III, Verification and Control, volume 1066 of Lecture Notes in Computer Science, pages
208–219. Springer-Verlag, 1996.

11. C. Ericsson, A. Wall, and W. Yi. Timed Automata as Task Models for Event-Driven Systems.
In Proceedings of Nordic Workshop on Programming Theory, 1998. To appear in a special
issue of Nordic Journal of Computing.

12. K. Havelund, K. G. Larsen, and A. Skou. Documentation of the Modeling and Verification of
Bang � Olufsens’s IOP Power Down Module in UPPAAL. Internal AUC document delivered
to B&O. Early version of this report., September 1997.

13. K. Havelund, A. Skou, K. G. Larsen, and K. Lund. Formal Modeling and Analysis of an
Audio/Video Protocol: An Industrial Case Study Using UPPAAL. In Proc. of the 18th IEEE
Real-Time Systems Symposium, pages 2–13, Dec 1997. San Francisco, California, USA.

14. P.-H. Ho and H. Wong-Toi. Automated Analysis of an Audio Control Protocol. In Proc. of
CAV’95, volume 939 of Lecture Notes in Computer Science. Springer–Verlag, 1995.

15. G. Holzmann. The Design and Validation of Computer Protocols. Prentice Hall, 1991.
16. H.E. Jensen, K.G. Larsen, and A. Skou. Modelling and Analysis of a Collision Avoidance

Protocol Using SPIN and UPPAAL. In The Second Workshop on the SPIN Verification
System, volume 32 of DIMACS, Series in Discrete Mathematics and Theoretical Computer
Science. American Mathematical Society, 1996.

17. K. G. Larsen, P. Pettersson, and W. Yi. Diagnostic Model Checking for Real-Time Systems.
In Proceedings of the 4th DIMACS Workshop on Verification and Control of Hybrid Systems,
1995.

18. M. Lindahl, P. Pettersson, and W. Yi. Formal Design and Analysis of a Gear-Box Controller.
In Bernhard Steffen, editor, Proc. of the 4th International Workshop on Tools and Algorithms
for the Construction and Analysis of Systems – LNCS 1384, pages 281–297. Gulbelkian
Foundation, March 1998. Lisbon, Portugal.

19. R. Milner. Communication and Concurrency. Prentice Hall, Englewood Cliffs, 1989.
20. S. Tripakis. Timed Diagnostics for Reachability Properties. In Proceedings of TACAS’99,

Lecture Notes in Computer Science, 1999.

